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Computational instabilities inherent in the solution of inviscid, incompressible
free-surface flow have been apparent for some time and different techniques have
been used to overcome them. In this paper we attempt to explain why these instabil-
ities occur and in doing so, a method is developed to study the spatially semi-discrete
eigenvalues and eigenvectors which govern the stability of the system. It is found
that the asymmetric spatial discretisation of the fluid domain causes the instabilities.
After mechanisms for stability are recognised and implemented, unsteady, invis-
cid, incompressible, linear and non-linear free-surface flow is simulated using a
hp/spectral element code, ensuring fast convergence, which incorporates arbitrary
Lagrangian–Eulerian (ALE) techniques to decrease deformation of the computa-
tional mesh. c© 1999 Academic Press
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1. INTRODUCTION

The linear, free-surface motion of an inviscid, incompressible fluid has been solved
exactly for simple finite depth water waves, e.g., travelling and standing waves [17] and
analytical approximation techniques have enabled the solution of more complicated linear
and low order non-linear systems [27, 20]. Numerical techniques have allowed the solution
of non-linear free-surface motion commonly involving submerged complex geometries
[35] and also surface piercing structures [1]. The finite element technique, in particular,
has been found to be very efficient in the solution of free-surface problems [1, 34] and the
newhp/spectral finite element technique is capable of very rapid convergence rates [9, 28],
which coupled with the ability to handle complex geometries [26, 5] make it a worthwhile
tool to aid the simulation of gravity waves.

A common theme with most of the finite element computations is the use of a smooth-
ing technique to inhibit the formation of the free-surface saw-tooth pattern, which is
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FREE-SURFACE FLOWS 27

characteristic of an unstable system. Though this phenomenon has been widely noted for
non-linear flow few have attempted to investigate or explain it. Longuet-Higgins and Cokelet
suggested it was due to the “physical growth of short gravity waves by horizontal compres-
sion of the crests of longer waves” [13] and proposed that these would be realistically
damped by viscosity. They developed a five-point smoothing formula which takes advan-
tage of the fact that alternate nodes on the free-surface form smooth curves and which is
now widely used [34]. Moore [15] and Roberts [24] predicted that the instabilities were
caused by a resonant interaction between the numerically induced discrete waves. They
used linearised eigenvalue analysis techniques to prove that the removal of certain modes
could stabilise the system.

In this paper we formulate a semi-discrete solution system to learn how the spatial dis-
cretisation affects the stability of linear gravity waves. The system evaluates a set of semi-
discrete equations relating the temporal derivative of the discrete values ofφ, the vector
potential, andζ , the surface elevation, and is of the form,[

φb

ζ

]
t

= L
[
φb

ζ

]
, (1)

whereb indicates the values on the free-surface boundary,t represents differentiation in
time, andL is a linear operator. Eigenvalues ofL which contain a positive real component
indicate an unstable system. An example of the dependency of the stability on the spatial
discretisation is shown in Fig. 1 where several meshes are shown with their corresponding
eigenvalues. The meshes (a) to (c) are all locally symmetric, that is, all the elements on the
free-surface have a vertical line of symmetry, though not necessarily globally symmetric
and have purely imaginary eigenvalues indicating stability, while the slightly asymmetric
mesh d is unstable as it has positive real eigenvalues. Some mechanisms to recover a
stable solution are then investigated and are used in conjunction with a revised arbitrary
Lagrangian–Eulerian technique used by Ho [7] for spectral elements, and also widely used
with finite element techniques [21], to solve non-linear free-surface flow.

In Section 2 we formulate the governing equations of a two-dimensional free-surface
system, including boundary conditions for an arbitrary frame of reference. Thehp/spectral
element formulation to solve the system is also derived. Section 3 describes the eigenvalue
stability analysis mentioned above and gives results of the eigenvalues and eigenvectors for
varying spatial discretisations. It also puts forward a number of mechanisms to counter this
instability. Results for the simulation of linear and non-linear free-surface flows are shown
in Sections 4 and 5, respectively, along with error calculations and validation of our results.
The conclusions to this work are given in Section 6.

2. INVISCID FREE-SURFACE GOVERNING EQUATIONS

We consider a Cartesian coordinate system, where the free-surface is described by
z= 0, wherez points vertically upwards and the free-surface height can be represented
asz= ζ(x, t) as in Fig. 2.

As the fluid is irrotational, incompressible, and inviscid we can represent the velocity by
the gradient of a potential such that

u = ∇φ, (2)
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FIG. 1. Comparison of eigenvalues of spatially semi-discrete system for contrasting meshes.
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FIG. 2. Definition of frame of reference and wall boundary conditions for contained free-surface system.

and the system can be evaluated by solving the Laplacian

∇2φ = 0, since∇ · u = 0, (3)

supplemented by suitable boundary conditions.

2.1. Boundary Conditions

2.1.1. Eulerian boundary conditions.The Eulerian momentum equation for the inviscid
free-surface is

∂u
∂t
+ (u · ∇)u = −∇P

ρ
, (4)

and by substituting the following vector identity,

(u · ∇)u = 1

2
∇u2− u× (∇ × u), (5)

into Eq. (4), while remembering∇ ×u= 0 for irrotational flow andu=∇φ, we are left
with

∇ ∂φ
∂t
+ 1

2
∇(∇φ)2 = −∇P

ρ
. (6)

By integrating spatially and substitutingP= ρgζ (the excess pressure caused by a distur-
bance) whereζ describes the free-surface elevation andz= ζ(x, t), we have the non-linear
Eulerian dynamic boundary condition,

∂φ

∂t
= −gζ − 1

2
∇φ · ∇φ. (7)

The kinematic boundary condition is formulated by considering that a particle on the free-
surface stays on the free-surface. Therefore

∂φ

∂z
= dz

dt
(8)

and using Eq. (2) combined with the material derivative identity for a stationary frame of
reference,

d f

dt
= ∂ f

∂t
+ u · ∇ f, (9)
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where f is a spatially and temporally dependent function, we have the non-linear Eulerian
kinematic boundary condition

∂φ

∂z
= ∂ζ

∂t
+ ∂φ
∂x

∂ζ

∂x
. (10)

2.1.2. Linearised boundary conditions.The standard linearised version of the Eulerian
boundary conditions are obtained by considering small velocities (∇φ¿ 1) and eleva-
tion (∂ζ

∂x ¿ 1) and ignoring any product of these. The resulting boundary conditions are
therefore

∂φ

∂t
= −gζ, (11)

∂φ

∂z
= ∂ζ

∂t
, (12)

which are evaluated onz= 0, or they can be combined to form one boundary condition
for φ,

∂2φ

∂t2
= −g

∂φ

∂z
. (13)

2.1.3. Boundary conditions in arbitrary reference frame.To change the frame of ref-
erence to an arbitrary one with velocityw, we substitute

∂φ

∂t

∣∣∣∣
w
= ∂φ

∂t
+ w · ∇φ, (14)

into (7) and therefore have the dynamic boundary condition in an arbitrary frame of reference

∂φ

∂t

∣∣∣∣
w
= −gζ +

(
w− 1

2
∇φ
)
· ∇φ. (15)

In the same way we formulate the kinematic boundary condition in an arbitrary frame of
reference to be

∂φ

∂z

∣∣∣∣
w
= ∂ζ

∂t
+
(
∂φ

∂x
− wx

)
∂ζ

∂x
, (16)

wherewx is thex-component ofw. Generally the frame of reference moves with the free-
surface in thez direction andwx is either zero or equal todφdx .

2.1.4. Wall boundary condition.The boundary conditions on the walls are such that

∇φ · n = Vw, (17)

whereVw represents the velocity at the wall.
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2.2. hp/Spectral Element Formulation

To solve the system numerically we divide the two-dimensional fluid domain into finite
elements and represent the velocity potential in terms of a set of modal expansions which
vary with h, length of the elements, andp, the polynomial order of the function, and a
corresponding set of coefficients. The velocity potential therefore takes the form

φ ≈ φδ =
ndof∑
i=1

φ̂i Ni (x, y), (18)

whereφ is the exact solution,φδ is the numerical approximation, and theφ̂i are the coeffi-
cients of the modal expansion basesNi (x, y). To solve the Laplacian

∇2φ = 0, (19)

we first splitφ into its constituent parts,

∇2φH +∇2φD = 0, (20)

whereφH represents the homogeneous value of the potential within the domain with zero
Dirichlet boundary conditions, andφD are the known potential Dirichlet boundary con-
ditions. We then construct the weak form of the equation by multiplying (20) by a test
function,vδ, and integrating over the domain. Following the Galerkin approach we set the
test function to be of the same form as the approximation basis, i.e.,

vδ =
ndof∑
j=1

v̂ j Nj (x, y), (21)

where the symbols have the same meaning as above. Equation (20) then becomes∫
Ä

∇2φH δ · vδ dÄ+
∫
Ä

∇2φDδ · vδ dÄ = 0, (22)

whereÄ is the area of the domain. Utilising Green’s Theorem the above equation becomes

−
∫
Ä

∇φH δ · ∇vδ dÄ =
∫
Ä

∇φDδ · ∇vδ dÄ−
∫

S
(∇φδ · n)vδ dS, (23)

where S represents the boundary andn is the normal in the outward direction on the
boundary. Denoting

∇φ · n = ∂φ

∂n
, (24)

and by substituting in Eqs. (18) and (21) we are left with

−
∫
Ä

ndof∑
j=1

φ̂H
i ∇Ni · ∇Nj dÄ =

∫
Ä

∇φD · ∇Nj dÄ−
∫

S

dφδ

dn
· Nj dS ∀ j, (25)

where thedφS/∂n are the Neumann boundary condition. In matrix form this can be written
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as

LφH = f, (26)

whereL andf are known and defined as

L [i, j ] = −
∫
Ä

∇Ni · ∇Nj dÄ, (27)

f [ j ] =
∫
Ä

∇φD · ∇Nj d A−
∫

S

dφS

∂n
· Nj dS, (28)

and

φH [i ] = φ̂H
i . (29)

To solve for the unknowns we invertL and multiply through, i.e.,

φH = L−1f. (30)

To evaluate the kinematic boundary condition we need to extract the velocity of the fluid,
which requires taking the gradient of the velocity potential. A problem arises due to the
modal basis being onlyC0 continuous across elements and therefore the velocity and free-
surface will be discontinuous. To recover the continuous velocity we follow a procedure
set out in [34], which uses the Galerkin approach to evaluate a continuous velocity field,d,
over the whole domain, i.e.,∫

Ä

∇φ · Nj dÄ =
∫
Ä

ndof∑
i=1

d̂i Ni · Nj dÄ =
∫
Ä

d · Nj dÄ ∀ j, (31)

where
∫
Ä

Ni · Nj dÄ is the mass matrix. We used a modified version of thehp/spectral
elementNεκT α r code [9, 25, 31, 32] to solve the free-surface flow.NεκT α r is an
hp/spectral element code utilising a hierarchal expansion basis of modified Jacobi polyno-
mials of orderp. A typical set of two-dimensional modal expansions for a polynomial of
order 4 can be seen in Fig. 3.

The computations are performed on a mesh with elements of sizeh. Convergence can be
achieved either by decreasingh or increasingp according to the theoretical error, presented

FIG. 3. Two-dimensional expansion modes up to polynomial order 4.
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FIG. 4. Symmetric mesh for stability analysis.

by [28], of

‖u− uδ‖H1(Ä) ≤ Ch(µ−1)p(−k−1)‖u‖Hk(Ä), (32)

whereu is the exact value of the function,uδ is the discretised approximated function,k is
the differentiability ofu, andµ= min(k, p+ 1).

3. STABILITY ANALYSIS OF SPATIAL DISCRETISATION

We start our analysis by considering two basic mesh configurations; the first is a struc-
tured, symmetric mesh, shown in Fig. 4, and the second a structured, asymmetric mesh,
shown in Fig. 5. We want to recognise the differences between the solutions for these dif-
ferent meshes in order to investigate how the computations were affected by the different

FIG. 5. Asymmetric mesh for stability analysis.
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FIG. 6. Time history of point of maximum displacement.

spatial discretisations. The motivation to investigate asymmetric meshes comes from the
wish to undertake non-linear flow solutions necessitating a moving mesh, which inevitably
introduces distortion to the grid. We hypothesise that whatever numerical effect a distorted
grid has on linear flow, it will have a similar effect on non-linear flow. All symmetric and
asymmetric meshes used in this paper are of the same pattern as Figs. 4 and 5, respec-
tively, and shall be denoted by the number of elements on each side i.e., Fig. 4 is a 10× 10
symmetric mesh.

Using thehp/spectral element solver described in Section 3 the two meshes gave differing
results for long time studies. The symmetric mesh was stable over long periods of time as
shown in Fig. 6, where we see the time history of a point on the free-surface for over 50
time units at the point of maximum displacement.

The displacement, frequency, and wavelength are all constant and stability is achieved.
Unfortunately the asymmetric mesh became unstable after relatively few periods. For
initial conditions of 0.1 cos(π(x+ 0.5)) the free-surface profiles for the symmetric and
asymmetric mesh after approximately 2 periods is shown in Figs. 7 and 8, respectively.

FIG. 7. Symmetric mesh free-surface profile at T= 1.14 s.
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FIG. 8. Asymmetric mesh free-surface profile at T= 1.14 s.

The asymmetric mesh exhibits the familiar saw tooth pattern previously seen by many
investigators [14].

Changing the type or order of the temporal discretisation merely changed the time step
at which the computations became unstable. Decreasing the time step for any given tem-
poral discretisation had no effect on the stability of the problem. We therefore decided to
investigate the effect of the spatial discretisation by developing a semi-discrete formulation
of the problem reduced to the solution values on the free-surface boundary.

3.1. Formulation of Semi-discrete Eigenvalue and Eigenvector Analysis

In order to formulate a semi-discrete system to investigate the stability of the numerical
problem we decompose the Laplacian into its interior and free-surface boundary compo-
nents, i.e.,

Lφ =
[

L i i L ib

Lbi Lbb

][
φi

φb

]
= 0, (33)

where the subscriptb refers to the degrees of freedom on the free-surface boundary and
i refers to all remaining degrees of freedom. The first row of this system can be rearranged
to obtain

L i iφi + L ibφb = 0⇒ φi = −L−1
i i L ibφb. (34)

Equation (34) therefore expresses the interior degrees of freedom in terms of the free-
surface boundary degrees of freedom. This is possible due to the elliptic nature of the
Laplace equation. The differential ofφ in the z-direction can similarly be represented by
an operatorD such that

Dφ =
[

Di i Dib

Dbi Dbb

][
φi

φb

]
. (35)
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Considering the bottom line of Eq. (35) we find an expression for the differential on the
boundary to be

∂φ

∂z

∣∣∣∣
b

= Dbiφi + Dbbφb. (36)

where∂φ
∂z |b is a vector of the values of∂φ

∂z on the free-surface. Substituting (34) into (36)
we obtain a relationship for the differential in terms of the boundary values of the velocity
potential, i.e.,

∂φ

∂z

∣∣∣∣
b

= −DbiL−1
i i L ibφb + Dbbφb =

[
Dbb− DbiL−1

i i L ib
]
φb = NDφb, (37)

whereND can be thought of as a discrete Dirichlet–Neumann operator. By combining (37)
with the linear free-surface boundary conditions

∂φ

∂t
= −gζ, (38)

∂φ

∂z
= ∂ζ

∂t
, (39)

we can now form the semi-discrete form of the linear free-surface movement[
φb

ζ

]
t
=
[

0 −gI

ND 0

][
φb

ζ

]
. (40)

The eigenvalues of the operating matrix dictate the stability of the scheme which implies
that we must find the eigenvalues,sn, such that[

0 −gI

ND 0

][
ψn

ηn

]
= sn

[
ψn

ηn

]
, (41)

whereψn andηn denote the eigenvectors. This system can be rearranged to form

−snψn − gηn = 0, (42)

NDψn − snηn = 0, (43)

and substituting Eq. (42) into Eq. (43) we obtain an equation for the eigenvalues of the full
matrix in terms of those of the Neumann–Dirichlet operator matrix,

s2
nIηn + gNDηn = 0. (44)

If we denote the eigenvalues and eigenvectors ofND byµn andαn, respectively, i.e.,

NDαn = µnαn, (45)

whereµn is complex, then we obtain

s2
n = −µng, (46)
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or

sn = ±i (µng)
1
2 . (47)

Therefore if we consider the general form ofµn, stating its phase and magnitude,

µn = |µn|ei θ , (48)

then

sn = ±ig
1
2 |µn| 12 ei θ2 (49)

= ±g
1
2 |µn| 12 ei( θ2+ π

2 ). (50)

If θ = 0 thenµn is real and we have purely imaginarysn eigenvalues, and the matrix system
(40) will have a purely dispersive solution. Ifθ 6= 0 then the eigenvalues,sn, have a positive
and negative real component resulting in an unstable system. For stability of an inviscid,
incompressible linear free-surface flow we require the eigenvalues of the matrix to be purely
imaginary. We can then conclude that any imaginary component inµn leads to instability,
caused by an asymmetry in thex-direction of the computational mesh.

3.1.1. Validation of numerical implementation.We measure the accuracy of the numer-
ical implementation by comparing the analytical values of the system’s eigenvalues with
the eigenvalues of the numerical system. System (40) can be represented analytically by[

φb

ζ

]
t

=
[

0 −gI

k tanh(kh) 0

][
φb

ζ

]
, (51)

wherek is the wavenumber andh the height of the free-surface. The resulting eigenvalues
of this system are therefore

λ = ±(gk tanh(kh))
1
2 i . (52)

The first analytical eigenvalue is represented byk = π and has a value ofλ1=±5.541131i .
Figure 9 shows the plot of the error,ε, between this analytical value and that produced

FIG. 9. First eigenvalue error for varying polynomial order,p.
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FIG. 10. First eigenvalue error for varying element size,h.

computationally on a 2× 2 symmetric mesh as the order of the expansions,p, increases and
Fig. 10 shows the error as the size of the elements,h, decreases for similar shaped symmetric
meshes. Figure 9 shows that log(ε) is proportional top and Fig. 10 that log(ε)∝ log(h)
proving standardhpconvergence.

3.2. Spatial Discretisation Comparison

To illustrate the above analysis we consider the case of 10× 10 symmetric and asymmetric
meshes. The spectral analysis was undertaken withp= 2 and the corresponding eigenvalues
and eigenvectors can be seen in Figs. 11–12. In Fig. 11 we see the eigenspectrum for
the symmetric and asymmetric meshes. The symmetric eigenspectrum clearly indicates
a stable solution while the solution for the asymmetric mesh is unstable. The first three
corresponding eigenvectors in terms ofζ are shown in Fig. 12. We note the sinusoidal
form of the eigenvectors corresponding to the analytical solution. The asymmetric mesh,
however, leads to a set of asymmetric eigenvectors biased in the same direction as the
free-surface elements of the asymmetric mesh.

FIG. 11. Eigenvalues indicating stability for symmetric mesh (left) and eigenvalues indicating instability for
asymmetric mesh.
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FIG. 12. First three eigenvectors in terms of frequency for symmetric (left) and asymmetric mesh.

3.3. Mechanisms for Stability

We have seen that symmetric and deformed meshes play an important part in free-surface
computations therefore we need a mechanism to numerically enforce the stability of the
computations.

3.3.1. Removal of high modes.We follow a procedure proposed by both Moore [15] and
Roberts [24], who theorised that the incorrect phase relation of the discretised system leads
to a resonance with the lower frequency causing the instability for the non-linear problem.
To remove the instability they removed the higher modes and inhpmethods we can apply a
similar technique. The higher modes are simply removed by zeroing the coefficients of the
highest frequency modal shape functions. Figure 14 shows the resulting purely imaginary
eigenvalues for computations using polynomial order 2 with the removal of the highest
mode after differentiation. Compare this to Fig. 13 which shows the eigenvalues with no
removal of modes.

Unfortunately as the original polynomial order increases more modes have to be removed
to enforce stability resulting in very expensive calculations for high accuracy solutions.

3.3.2. Addition of a diffusive term.Artificial diffusion is commonly used in compres-
sible flow simulation to remove numerical instabilities and is attractive in finite element
methods due to the ease with which it can be implemented. To this end we consider adding

FIG. 13. Eigenvalues for asymmetric mesh with no mode removal.
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FIG. 14. Eigenvalues for asymmetric mesh with removal of highest mode.

a diffusive term to the kinematic boundary condition to enforce stability. The kinematic
boundary condition then becomes

∂ζ

∂t
= ∂φ

∂z
+ µ∂

2ζ

∂x2
, (53)

whereµ is a constant dependent upon the discretisation properties(h, p). We denoteµcritical

or µc as the lowest value ofµ which produces a stable solution. This added term has the
benefit of diffusing high frequency displacements of the free-surface, i.e., the saw-tooth
effect, but unfortunately also damps the entire system. The resulting eigenvalues of the
semi-discrete system with a polynomial expansion basis of order 2 andµc= 3× 10−4 eval-
uated on an asymmetric mesh (Fig. 5) are shown in Fig. 15. All the real parts are non-positive
indicating stability.

Before we can assess the relationship betweenµc, h, p, and the asymmetry of the mesh,
we must first mathematically quantify the meaning of mesh asymmetry or skewness. We
represent the size of an element byh, the length of the element’s side on the free-surface.
We also need to formulate a characteristic length representing the amount of skewness
of an element. Figure 19 shows a typical skewed element illustrating the lengthσ which

FIG. 15. Eigenvalues for asymmetric mesh with added diffusion term.
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represents the salient asymmetry of our problem. We denote line AB as the vertical unit
vector,ez, and the line CD as the intercept of the centre of the element’s free-surface side
and its interior vertex. The angleθ is the angle between these two lines. If the coordinates
of the vertices are denoted byX1, X1, andX3, whereX j = (xj , yj ) then

AB = ez (54)

CD=
[
x3−

(
x1+ x2

2

)]
ex +

[
y3−

(
y1+ y2

2

)]
ez, (55)

and

|CD| sinθ = AB × CD
|AB| . (56)

We can therefore represent the characteristic length of the skewness of an element,σ , as

σ = AB × CD (57)

and the non-dimensionalised skewness of an element,κ, as

κ = σ

h
. (58)

Figure 16 shows the values ofµc for varying values ofσ . Whenσ = 0 we have an symmetric
mesh and asσ increases the asymmetry of the mesh increases, as doesµc. It can be seen that
the data almost collapses to a single curve purely dependent onσ . It must be remembered that
although the figure seems to indicate non-dependency onh, for similar shaped meshes,h and
σ are proportional, i.e.,κ = constant. We believe the dependence of the solution’s stability
on the skewness of an element, with respect to the vertical, comes from the dependence of the
kinematic boundary condition on the accurate solution ofδφ

δz . A largely skewed element will
not accurately evaluate this derivative for at least one of its free-surface vertices. Figure 17
shows the value ofµc for increasing values ofp performed on 1× 1, 2× 2, and 4× 4
asymmetric meshes corresponding to element sizesh= 1.0, h= 0.5, andh= 0.25.µc was
evaluated by finding the lowest possible value ofµ, to 8 decimal places, which gave purely

FIG. 16. µc for increasingσ and varyingh with p= 2.
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FIG. 17. µc for varying order of expansion basis where h represents the size of the element edge on the
free-surface.

imaginary eigenvalues. A relationship of the form log(µc)∝ p is apparent. We therefore
hypothesise that the relationship is of the form

µc = Cσαp, (59)

whereα andC are positive constants. To test this theory we measured the value ofµc for
increasingσ on a 5× 5 mesh for differing values ofp. The results are shown in Fig. 18
and support our hypothesis as log(µc)∝ log(|σ |) with the steepness of the lines increasing
with p. By utilising the information contained in Figs. 17 and 18,µc can be numerically
bounded by takingC as 1

10 andα as 0.2. Equation (59) is consistent with the requirement
thatµc→ 0 upon convergence. Further more it is consistent with thehp spectral element
approximation such thatµc should decay ashαp asσ is proportional toh for different sizes
of similar shaped elements.

This procedure is only valid if the accuracy of the solution behaves identically as before,
i.e.,ε∝ hp. The numerical validation of this can be seen in Figs. 21 and 22 where the error
of the first eigenvalue is plotted against increasingp andh, respectively. In Fig. 21 mesh a

FIG. 18. µc for increasingσ and varyingp with h= 0.2.
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FIG. 19. Diffusion coefficient is dependent on the distanceσ .

FIG. 20. Meshes used for first eigenvalue error analysis.
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FIG. 21. First eigenvalue error for varying order of expansion basis forh= 0.2.

is a 5× 5 symmetric mesh while meshes b to e refer to those in Fig. 20. Figure 22 illustrates
the rate of convergence, which is consistent withhp convergence, i.e., log(ε)∝ log(h). It
can be seen in both figures that the rate of convergence is proportional to the skewness of
the mesh, with a distorted mesh undergoing slower convergence.

4. LINEAR FREE-SURFACE FLOW

Having developed a stability enforcing mechanism we investigate the accuracy of our
unsteady code. A 10× 10 symmetrical mesh was used (Fig. 23) for the computations and
the error was evaluated by comparing the computational results with the theoretical solution

φ = Acosh(ky) cos(ωt) cos(kx), (60)

whereh is the height of the free-surface,k is the wavenumber,ω is the frequency of the
oscillations, and

ω2 = gk tanh(k). (61)

FIG. 22. First eigenvalue error for varying order of element size forp= 4.
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FIG. 23. Symmetric mesh used for linear free-surface computations.

The initial conditions were

ζ = 0 (62)

and

φ = Acosh(ky) cos(kx) on z= 0, (63)

whereA determines the amplitude of the free-surface motion. In Fig. 24 we see the time-
history of a particle on the free-surface which experiences the maximum displacement for
increasing order of expansion basis. The initial condition wask=π and A was chosen so
that the maximum displacement is approximately 0.1, as shown in Fig. 24.

The phase error whenp= 1, i.e., when we are using a linear expansion basis, can clearly
be seen in Fig. 24, as can the rapid convergence of the computation when the order of the
basis increases;p= 3 andp= 5 are indistinguishable from each other. TheH1 error plots
shown in Figs. 25 and 26 demonstrate that log(ε)∝ p and log(ε)≈ 2 log(1t) as expected
since we used a second order time integration scheme to discretise the combined linear

FIG. 24. Time history of particle for linear flow.
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FIG. 25. Error convergence for increasing polynomial order.

boundary condition (13) such that

φn+1− 2φn + φn−1

1t2
= −g

∂z

∂φ
. (64)

5. NON-LINEAR FREE-SURFACE FLOW

The non-linear flow was numerically simulated using a fully Lagrangian version of the
dynamic and kinematic boundary conditions, i.e.,

dφ

dt
= −gz+ 1

2
∇φ · ∇φ, (65)

∂φ

∂x
= dx

dt
, (66)

∂φ

∂z
= dz

dt
. (67)

FIG. 26. Error convergence for decreasing1t.
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To enforce stability we introduce a diffusive term into the kinematic boundary condition,

dz

dt
= ∂φ

∂z
+ µ ∂

2z

∂x2
. (68)

The mesh must be updated each time step so that it contains the entire fluid domain. We
ensure this by solving two Laplacian equations of the form

∇2x = 0, (69)

∇2z = 0, (70)

where the Dirichlet boundary conditions were applied using thex and y values of the
nodal points on the boundary. The nodal points on the free-surface were obtained from
the Lagrangian motion of the fluid. The side wall nodal points are then linearly adjusted
according to the motion of the fluid when in comes into contact with the walls, while
the bottom walls nodes are stationary. To ensure the accuracy of the model we test our
computational results against other analytical and computational results.

The first comparison is made with second order analytical results developed by Wu and
Eatock Taylor [34]. An equation is formulated to calculate the value ofζ at any time for
sloshing in a rectangular box. The computations were performed for a box of length 2
and depth 1 with an initial maximum displacement of 0.1 and polynomial order 2. The
mesh in its initial state is shown in Fig. 27 and the comparison between the analytical and
computational results shown in Fig. 28.

The two results are in good agreement and as Wu and Eatock Taylor suggest the discrep-
ancies can be attributed to the fact that the analytical results are only second order, while
the computations take into consideration higher order effects. The non-linear wave profile
of this motion can be seen in Fig. 29.

The next comparison is between qualitative analytical data derived by Wu [33]. The
results concern a submerged cylinder undergoing sinusoidal horizontal and vertical motion.
He hypothesises that the frequency of the vertical force on a submerged cylinder undergoing
horizontal motion is twice that of the horizontal force. The domain was meshed using a
finite element meshing code calledFELISA [18, 19]; a close up of the mesh around the

FIG. 27. Initial conditions and mesh used for non-linear sloshing.
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FIG. 28. Computational and analytical time history of particle for non-linear flow.

cylinder can be seen in Fig. 31. The domain is 100 units in length and 2 in depth. The radius
of the cylinder isr = 0.5 and its centre is submerged by 0.75, identical to the setup used in
[35]. The maximum displacement isr2 and the wave-frequency was 1. Figure 30 illustrates
the frequency doubling and Fig. 32 shows the free surface profile at time T= 3 and T= 9.

Further correlation is sought by investigating wave motion contained within a box which
is undergoing sinusoidal translational motion. Faltinsen [3] formulated a linear solution for
this motion and we use the same case studies in Wuet al.[36] to test the computations. The
free-surface position,ζ , is calculated using

ζ = ζ1+ ζ2, (71)

where

ζ1 = a

g

(
xω2+

∞∑
n=0

Cnω sinknx

)
sinωt (72)

ζ2 = −a

g

∞∑
n=0

ωn

(
Cn + Hn

ω2

)
sinknx sinωnt (73)

FIG. 29. Time history of fluid surface for Lagrangian flow for comparison with Wu and Eatock Taylor’s
analytical scheme withp= 3.



FIG. 30. Horizontal force (above) and vertical force on a submerged cylinder undergoing horizontal oscilla-
tions close to a free-surface.

FIG. 31. Computational domain for horizontally oscillating cylinder at T= 0. Note the use of symmetric
triangular elements on the free-surface.

FIG. 32. Free-surface disturbance due to a horizontally oscillating submerged cylinder at T= 3 (left) and
T= 9.

49
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and

kn = 2n+ 1

L
π (74)

ω2
n = gkn tanhknd (75)

Hn = ω3 4

L

(−1)n

k2
n

(76)

Cn = Hn

ω2
n − ω2

. (77)

L andd are the length and breadth of the tank and are both 1.ω is the wave frequency of
the forced oscillations which are described by

x = a cosωt, (78)

wherea is 0.002 so the motion is largely linear. The computations were undertaken on a
10× 10 symmetric mesh.

The ωn are the natural frequencies of the motion and ifω is equal to one of them
the displacement will reach infinity. The motion is primarily driven by the first natural
frequency,ω0, and the driven frequency,ω. The difference between these frequencies
defines the wave envelope. We attempted four simulations, one forω= 0.5414ω0, ω =
0.9ω0, ω= 1.1ω0, andω = 0.999ω0. Figure 33 shows the analytical and computational re-
sults forω= 0.5414ω0 and very good agreement is seen. Figures 34 and 35 are close to the
resonant frequency and therefore the amplitude of the wave grows much larger. Agreement
is still very good especially close to start up, though as the amplitude grows non-linear
characteristics of higher peaks and troughs are shown by the computational results, which
are missed be the linear analysis. These effects are even more apparent in Fig. 36 where
the forcing frequency is almost identical to the first natural frequency and the amplitude
increases greatly.

FIG. 33. ω= 0.5414ω0.
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FIG. 34. ω= 0.9ω0.

FIG. 35. ω= 1.1ω0.

FIG. 36. ω= 0.999ω0.
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6. CONCLUSIONS

In this paper we have computationally simulated linear and non-linear free-surface flows
using anhp/spectral technique. A semi-discrete system was formulated to investigate the
stability of the spatial discretisation used in the linear computations. It was found that an
asymmetric mesh was inherently unstable, while a symmetric mesh was stable and that
this instability was attributed to the dispersive nature of the discrete Neumann–Dirichlet
operator associated with the asymmetric mesh. Mechanisms to enforce stability were de-
fined and tested and investigation suggested that the addition of a diffusive term in the
kinematic boundary condition, where the coefficient is consistent with thehp/spectral ap-
proach and takes into account the skewness of the mesh with regard to the symmetry of local
elements, was suitable. These findings were then used to simulate non-linear free-surface
flow for different conditions. The results were validated by comparing them to qualitative
and quantitative results for sloshing, translational movement of a submerged cylinder, and
for translational forced oscillations of the containing tank. Future work will involve the
investigation of viscous free-surface flows.
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